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In the mechanics of deformed solids it is usually assumed that super-
posing small amplitude vibrations on a static load has no effect on
the over-all characteristics of a material under strain. This hypothe-
sis is reflected in the fact that the existing equations of state for the
case of static loads with superposed small vibrations give deformation
characteristics which differ little from the corresponding parameters
of deformation processes taking place in the absence of excitations.
At the same time, substantial changes in the deformation character-
istics of a number of materials are observed under certain conditions
after the application of alternating stresses of small amplitude.
Reports on studies of creep of metals [1, 2], elastomers [3], and
concrete [4] have been published, in which the fatigue curves ob-
tained with small vibrations superposed on static loads lie above
curves obtained for static loads corresponding to the maximum pul-
sating load level. Attempts have been made to explain this effect
from the standpoint of the molecular-kinetic [3] and phenomeno-
logical [5] theories. Certain theoretical considerations and experi-
mental data, discussed in this article, show that superposing a small
dynamic component on a static load leads to an increase in the rate
of creep of several polymer materials. This effect, which is due
mainly to an increase in the polymer temperature as a result of dis-
sipation of vibrational enérgy, differs from the "vibration effect”
observed on elastomers by Slonimskii and Alekseev [3], in which
the temperature rise due to the heat generated by vibrations plays
no substantial part.

The vibrational creep of polymer materials observed
in our experiments differed from that described in
[3]. According to results obtained in [3], superposing
a vibration component produces the same effect as
increasing the static load at the moment indicated by
an arrow (Fig, la). In our tests, the superposition of
vibrations on a static load produces no immediate
changes in the behavior of the material; it is only
after a certain time (incubation period) that the creep
rate € begins slowly to increase., When the steady-
creep stage is reached, € is sometimes two to three
orders larger than the value recorded before the
superposition of vibrations (Fig. 1b); this increase in
& is accompanied by a substantial increase in specimen
temperature. The delay in the acceleration of creep
is evidently due to the fact that at the moment of the
application of vibrations the material continues to
deform elastically, so that the quantity of dissipated
energy is small and the increase in specimen temp-
erature slow. In the later stages, heating leads to a
more intense energy dissipation which, in turn, gen-
erates more heat; as a result, avalanche-type accel-
eration of the creep rate takes place.

A characteristic feature of the vibrational creep
of polymer materials under the conditions studied is
that the stress ¢ is very little (1~2%) different from
the static stress, so that the variation in stress may,
in the first approximation, be neglected. The intense
heating of a material in vibrational creep must be
taken into account, however. The problem of heating

of a specimen under a vibrational load was analyzed
theoretically by Ratner and Korobov [6] under the
assumption that the temperature gradient inside the
specimen is negligibly small and that the heat-
transfer resistance is concentrated at the specimen
surface. The analysis presented below also takes
into account the temperature distribution in the
specimen interior.

§ 1. It is known that the elasticity of polymer
materials is nonequilibrium in character, so that
heat evolution during cyclic loading takes place in
the entire specimen volume, In the first approxi-
mation, for sufficiently high vibration frequencies,
the effect of the principal (static) load on heat evol-
ution may be neglected. In this case, the quantity of
heat evolved per unit time in a unit volume of a
cylindrical specimen in tension is [7, 8}

W = Y00, a.1)

Here oy is the amplitude of the vibration component of
tensile stress and J? the so-called loss compliance
which, for a given material, depends on temperature
T and frequency w. In the case of amorphous polymers,
this relation is represented by universal curves J"
(wap), where ap 1s the ratio of relaxation times at
various temperatures, which is given by the Williams-
Landell-Furry equation [8]
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Here ¢ and c5 are constants, and Ty is the reference
temperature. Experiment shows that, in the interval
of practical interest, lg J" is linearly dependent on
lg wa, since one can obtain from (1.2)

"o K B(T_TU)
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where K, n, and 8 are constants. At small (T-Tg)/cs,
this relation may be approximately represented by
” K
J" = &Texp BT —Ty)]. (1.3)
Thus, for instance, using data from [7], one can

show that the following relation is applicable to a
plasticized poly-n-butylmethacrylate:

J' = 5'10();6 exp [0.26 (T —To)1;
o

(1.4)

here temperature is in °K, frequency in cps, J" in
cm?/dyne, and Tg= 227°K is the glass transition
temperature. The Williams-TLandell-Furry equation
is not directly applicable to crystalline polymers,
including caprolite which is the subject of the present



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 48

investigation; there is, however, reason to suppose
that the relation (1.3) is applicable to these materials
in a certain range of practical interest.

Using Egs. (1.1) and (1.3) and neglecting the temp-—
erature variation in the axial direction, we obtain the
following equation for the heat balance of a cylindri-
cal specimen:

oT
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Here p is density, c specific heat, A thermal conduc-
tivity, and r instantaneous radius (measured from the
specimen axis).

With a view to simplifying the analysis of the pro-
blem, we neglect both the temperature dependence of
density, specific heat and thermal conductivity and
the passible variation of stress amplitude o, along the
radius, associated with the variation in the elastic
characteristics of the material; the latter is permis-
sible, since the elastic modulus is relatively constant
in the temperature range under consideration. In this
way, the determination of the temperature variation
along the radius and with time is reduced to solving
Eq. (1.5) for the real initial and limiting conditions

ar
T (T —=T)=0

at r=ro, T=T7T, at t=0(1.6)
on the assumption that the heat radiation condition is
satisfied at the specimen surface; (¢—heat transfer
coefficient; ry—specimen radius).

Analysis of this boundary-value problem is similar
to the analysis of stationary thermal explosion, first
studied by Frank-Kamenetskii [9] (see also [10]). As
is known, this problem has a certain nontrivial sing-
ularity, which has an interesting interpretation in
the case of heat generated by 1 . yation. To elucidate
this singularity, it is advantageous to reduce Eq.
(1.5) to dimensionless form; assuming
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Assuming that the limiting conditions are sta~
tionary, it may be postulated that at 7> 1, i.e.,
t > rjgM, the solution should approach a steady-state
solution which satisfies the equation

i d.d
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and the boundary condition
du -

The above-mentioned singularity of the problem
consists in that the steady-state solution exists not for

any values of §, but only for & = &y, when (as was

shown in [11}])
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Fig. 1. a) Effect of vibrations observed in [3];
b) effect of vibrations due to heat evolution. 1)
Creep curve (elastic aftereffect) of a polymer
material in the absence of vibrations; 2) creep
curve (elastic aftereffect) after the superpo-
sition of a vibration component. (The moment
of application of vibrations is indicated by an
' arrow. )

In a special case §y= 2, if at the boundary r =
=r,, T=T l.e., @ =60 =, Inequality (1.11) shows
that steady-state distribution of temperature is im-
possible when the specimen radius is larger than T
In this case, the specimen temperature will rise until
the onset of thermal degradation, viscous flow, or
other processes of polymer destruction. At rq < r two
steady-state solutions are possible (see, e.g., [10]),
one of which (corresponding to more intense heating)
is unstable; the latter fact was rigorously substantiated
in [12]. At ry=r,, the two solutions become one, and
the distribution of reduced temperature u along the
specimen radius is given by

u=1In8s/8) —21In (1 + st?), (1.12)

so that the maximum reduced temperature u, and the
reduced temperature at the specimen surface u,, are
equal to, respectively,

u, = ln 60
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If, following [6], one starts by averaging the temp-
erature along the specimen radius and by assuming
that all the heat-transfer resistance is concentrated
at the boundary, the equation of the heat balance for
a cylindrical rod becomes
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where 7 is the heat transfer coefficient. The unknown
temperature satisfies this equation and the initial
condition T = Ty The expression for the critical spe-
cimen radius, above which steady-state temperature
distribution is impossible, is in the form
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Fig. 2. Schematic of a machine for vibrational
creep tests.

It should be noted that the approximation (1.3) cannot be used
to describe vibration~induced heat evolution at too high temperatures,
because the temperature dependence of J" passes through a maximum;
this leads to the existence of a second stable steady-state process(see
also [6]), in most cases unreal in the physical sense, because it cor-
responds to temperatures at which intense thermal degradation of
polymers takes place. An analogous situation (including the eXistence
of a physically unreal steady-~state process at elevated temperatures)
exists in the theory of thermal explosion, in which the exponential
dependence of the reaction rate on temperature rise (postulated by
Frank-Kamenetskii) at sufficiently high temperatures no longer satis~
factorily approximates the Arrhenius equation.
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Fig. 3. Creep curves of caprolite under static load
0=3kg/mm? 1,2)T =20"C;3,4)T=40"C;
5,6) T =60°C; 7,8 T =80"C.

The following sections describe the results of experiments which
show that in the case of polymer materials a situation.is possible when
the increase in the rate of creep after the application of vibrations is
mainly a result of the increase produced in the specimen temperature
by the dissipation of energy.

§2. The creep tests were carried out on a testing machine con-
structed in the Mechanical Department of the Research Institute at
Moscow State University; a schematic of the machine is shown in
Fig. 2. The static load was applied by a weight P suspended on a
connecting rod 2 which, in turn, was secured to the specimen 1. The
load was transmitted through a connecting rod 3 and a piezo-probe 4
to a beam 5. The vibrational load component was excited by a
dynamic head 6. Alternating (sinusoidal) emf for the excitation of
vibrations was generated by 3G-12M audio-frequency oscillator and
transmitted through a U50 amplifier and a CT matching transformer
to the. coil of the dynamic head rigidly attached to the beam 5.
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Fig. 4. Vibrational creep curves of caprolite:
1) experiment; 2) calculation from formula (3. 3);
3) variation in specimen temperature.

The dynamic load component was measured with a barium titanate
piezocrystal differential probe 4 which converted the force pulses into
electric signals. The alternating emf generated by the piezo-probe
was transmitted to 2 cathode follower and recorded with the aid of a
MVL-3 millivoltmeter and a EO-7 oscillograph. The oscillograph
was provided to observe the form of the dynamic load pulses.

The variation in the specimén strain was measured (utilizing the
displacement of shackles) with the aid of cantilever beams 7, which
were provided with wire resistance strain gauges. The free ends of
these beams were acted on by stops attached to the connecting rods
2 and 3, whose strains were negligibly small in comparison to the
strain of the specimen. Displacement of these rods produced changes
in the bending diflection of the cantilever beams; the resulting signal
from the strain gauges was transmitted to an automatic bridge AMD
which recorded on a graph paper the differences between the displace-
ments of rods 2 and 3, i.e., the specimen strain (or, more accurately.
the static strain component). A dismountable heating chamber was
provided for tests at elevated temperatures. Heating was done by the
passage of a heat-transfer agent flowing through a spiral tube; the
heat-transfer agent, circulating in a closed circuit, was supplied
from a thermostat TC-15M.
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Figure 3 shows the results of creep tests on caprolite specimens
at 20°, 40°, 60°, and 80° C, under a constant stress ¢ = 3 kg/mm?
(calculated for the initial cross section). The specimens were in the
form of cylindrical rods 6 mm diam., with a 60 mm long gauge por- -
tion. The results of creep tests obtained for identical caprolite spe-
cimens with a dynamic Ioad was superposed on the static load g = 3
kg/mfb2 (40%of the UTS) are shown in Fig. 4. The dynamic load
frequency was 200 cps, its amplitude 0.06 kg/mm?, i.e., 2% of
the applied static load. The initial ambient and specimen tempera-
ture was 20° C. The variation in the temperature of specimens under
a combined influence of static and dynamic loads is illustrated by
curves 3 in Fig. 4. The temperature was measured in the middie of
the specimen gauge portion with a copper-constantan thermocouple,
made of 0.03 mm diam. wires. The difference in the rate of heating
of specimens 1 and 2 was mainly a result of differences in the thermal
insulation of these specimens. (Thermal insulation was used to equal-
ize the specimen temperature both in the longitudinal and in the
radial direction; without insulation, the temperature gradient along
the specimen radius would be considerably steeper.)

Comparison of the results reproduced in Fig. 3 and 4 gives no
answer to the question whether the effect of vibration on the rate of
creep of pelymers is only due to the increase in the specimen tem-
perature and a corresponding reduction in its strength, or whether
another temperature~independent mechanism operates. The point
is that data shown in Fig. 3 were obtained at constant test tempera~
tures, while those reproduced in Fig. 4 were obtained for specimens
whose temperature was continuously rising. The question whether
or not a temperature-independent vibration effect exists could be
settled by experiments of two kinds. One could, for instance, carry
out tests with superposed vibrations and maintain the specimen tem-
perature constant by cooling; comparison of results obtained under
these conditions for specimens under equal static loads with and
without superposed vibrations should show whether vibrations alone
can produce the effects observed. (Tests of this kind were carried
out by Lokoshenko and Shesterikov on duralumin specimens, in the
case of which vibrational creep divorced from temperature vibrations
was observed.) One could also carry out tests with and without super-
posing vibrations on identical static loads, ensuring that the tempera-
ture of specimens under static loads varied in the same way as that of
specimens under pulsating loads. Unfortunately, carrying out tests of
either kind on polymer specimens invoives considerable difficulties.
Consequently, instead of running tests under static load at variable
temperatures, we constiucted theoretical creep curves of this kind,
using creep test results obtained at constant temperatures and assum-
ing the temperature variation to be represented by curves 3 in Fig. 4.
Some theoretical considerations, on which the construction of these
curves was based, are discussed in the following section.

§3, Let us analyze the deformation process. Fol-
lowing the known kinetic concepts of deformation [13,
14] we shall write the equation of the creep strain rate
in the form

de,
dt

© = F(e) exp =019, @.1)

Here g is the creep strain, U the activation energy,
o the stress, T the temperature, R the universal gas
constant, vy the material constant, and t the time.
This expression assumes an Arrhenius dependence of
the strain rate on temperature, a linear dependence
of U on o0, and a certain dependence of the strain rate
on accumulated gtrain, In a general case, when o and
T are time~dependent, the integral of (3.1) will be

&c 1
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or, in inverted form,

t
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Here the function ¥ is the inverse of y. In the
special case of constant ¢ and T during the entire de~
formation process, (3.3) becomes

‘sC;T“{texp—%m}. (3.4)

Equation (3.4) was first derived in [15]. Based on
the above relations, a simple method of determining
the function ¥(x) and parameters U and vy can be pro~
posed. This method consists in the following.

Creep tests are carried out at several constant
temperatures Ty, Ty, ...., at a constant stress o to
obtain a series of curves ‘

o= gy (B),  go= gy (1), ... @.5)

If the reasoning on which Eq. (3.3) and (3.4) are
based is correct, it should be possibie to obtain each
of these curves from another by conformal trans-
formation of the time axis, so that

g (8} = & (art) = . .. (3.6)
From (3.4) it follows that
— (U — U—
~ap = exp ———-—(RTg 19) / exp — (-—_._RTITG) =
— (U — Ty — T
= exXp ( g;)lé,zl ) (3.7)

so that, knowing the value a from experiment, the
reduced activation energy U-yo can be easily found
from (3.7). Finally, knowing U-vyo and using any one
of curves (3.5), we obtain the function ¥(x), after
which Eq. (3.3) is used to construct the curve re-
presenting the variation in strain at variable stresses
and temperatures,

This method was used to construct curves &(t); the
time-dependence of T was assumed to be that deter-
mined by vibrational creep tests. The results plotted
in Fig. 4 (blackened circles) show the behavior of
specimens under static load.

Data in Fig. 4 show that curves 2, constructed by the above
described method, almost coincide with curves 1 obtained for pul-~
sating loads. It may therefore be concluded that the increase pro-
duced in the rate of creep by superposing vibrations on static loads
is due mainly to changes in the material strength associated with
heat evolution and resultant temperature rise.

At certain values of the activation energy U—yo it was observed
that this property is temperature-dependent. This result is not a
contradiction of published reports (e.g., [16]) that varying T pro-
duces changes in the activation energy for relaxation processes. In
our calculations we used a certain "effective vibration energy,"
which was determined from, for instance, creep curves at 20° and
40°C, or 40° and 60° C, etc.; the difference between values so
obtained and the actual values at given temperatures cannot lead
to serious errors in the construction of theoretical curves.

The relations used above in the analysis of experimental data
represent, from the point of view of the phenomenological theory
of creep, a variant of the theory of strain hardening. It should be
noted that Eq. (3.1) is valid for not too low stresses only.
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In the final stages of our creep tests, the formation of a neck,
similar to the necking associated with "cold flow" and described by
Kargin and Sogolova [17], was observed. Since the theories cited
in this article make no claims to describe processes that take place
in the neck, there is no reason to suppose that close agreement be-
tween experimental and theoretical curves (curves 2 and 1 in Fig. 4)
would also be observed in-the large strain range, i.e., in the
presence of necking. This view is supported by the fact that the
theoretical curve constructed for specimen 2 deviates sharply from
the corresponding experimental curve at large strains. A theory of
neck propagation was previously formulated in [18].
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